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& Summary

?\ The “"first nonparametric maximum penalized likelihood density
L

estimator of Good and Gaskins", corresponding to a penalty propor-

tional to the Fisher information, is derived in the case that the
density function has its support on the half-line. The computa-
tional feasibility as well as the consistency properties of the
estimator are indicated.
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Lat xl.xz.... .xn be independent cbservations from a distri-
bution function F with density function f assumed to have finite
Pisher information I(f) = [(£)%/¢ = 4f(v')%, where v = £%. The
maximum penalized likelihood method of density estimation (MPLE)
was introduced by Good and Gaskins (1971) and consists of maximizing
th§ mlizd likelihood functional L(f) = 131 £(x,) exp{-0(£1},
where ¢ denotes some penalty functional for “rough® density
functions £. Thus, they avoided the Dirac delta solution of the
unpenalized problem, and for the two penalty functionals they
proposed they were led to two nonparametric density estimators,
known as the "first and second MPLE's of Good and Gaskins™ after
de Montricher, Tapia and Thompson's (1975) paper where their
existence and uniqueness were rigorously established within the
framework of Sabolev spaces.

The "first MPLE of Good and Gaskins” fn' to which we restrict
ourselves here, corresponds to #(f) = aI(f)/4, O > 0, and in the
case that the support of £ is the entire real line R and
verm = {v v, v' € LG)} - a Sobolev space of order one -
de Montricher et al (1975) showed fn to be an exponential spline

with knots at the sample points, given by fn - u:, where

. -4 -1 _ y
(1) u x) = (4) @) iglmnux,) ep{-0 _/a) lxxil},xem,

is the MPIE of v, with ln > 0 - the Lagrange multiplier corresponding

to the coustraint ]f = ] of the underlying optimization problem.
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We will show that in the case that £ has its support on the
half line R = (0,0) and v € K'(R ), the “first MPLE of Good and
Gaskins” £ + (we supress the subscript n) is also an exponential
spline with knots at the sample points, given by £ W ui. vhere
u, - the MPLE of v - is given by (2) below.

Let {| - Lol - ||'2'+ denote the L,(R) and L,0R )} norms

respectively, and consider the MPLE problem
B 2 2 1
1) max I uX )exp{-a ||u’ ||2'+}. u€HR)

subject to: flu]l, =1 and uwix)) 20, 1 =1,2,...,n.
’
Proposition 1. Problem (P1l) has a unique solution u 4 given

implicitly by

-4 -1 y
(2) u,(x) = (4da) ' } u, (x,) " lexp{-(A/a) |x-x1| +
=1

ep(-07 @) ¥|xex, | M, x €m,,

wvhere A > 0 is the lLagrange multiplier corresponding to the con-

straint ||u||2 LR
’

u(|x|) for al1 x € R {0}, v(0) = lim u(x),

Proof. Let u(x)
x0*

and get X_

i 2 for all i=}l,...,n. Then problem (Pl) is equivalent

to problem

n
- Y ETY -
(P2) max |¥|_1 uz(xi) up{-a“n ||2}. u € H.

swject to: [[Gll3 = 2 ana S(x) 20, |1} = 1,...0m,




vhere !l' = {g € HIM): g(x) = g(-x) for all x € R). Notice that
for u € Hlm). i.e., for u not necegsarily symmetric, there exists

a unique solution to problem (P2) given by

n
Bptx) = ) @) =4 IXI ‘-'oo‘i)—l exp -0/ a)” Jx-x,1}, x €m,
ij=1

where A is the Lagrange multiplier corresponding to the constraint
"i"g = 2. The arguments leading to this result are identical to
those in de Montricher et al (1975) leading to (1). Hence to show
that the spline function ;0 is also the unigue solution to pxrcblem
{P2) and hence u+(x) Z u(x) for x 61R+, the unique solution to
problem (Pl), we need only prove that u is in n, - i.e., symwetric
about zero. To this end notice that '\30 is smmetric everywhere if
it ig symmetric at the knots, i.e., if ‘-’0‘1’ = G(—xi) for i=1,...,n.

But this is true since in system (3) below the variables G(xil,

u(-x i, s i=1,...,n are interchangeable:

(31 wix) = (4 a) I @)™ expl-0/ a)? [x.-x, 1) +
i=1 ) 4
- -1
ul-x,)"" exp{-(V )" Ixj+xi|11.
n
J= @™ ] oGy
=]
6(-x1)°

uf-x exp{-(l/co" lxj+xil] +

Peml-tver® [xox 0,

j'l,...,n.
Corollary 1. The "first MPLE of Good and Gaskins™ when f has its

support on lt+ is given by £+ = ui.
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Proof. This is a consequence of the nonnegativity of u_ and

Lemma 3.1 in de Montricher et al (1975).

Remark 1. All the consistency results developed in Klonias (1931)
for tn = uz, where u is given by (1), are also valid for f+ and
very little has to be changed in the way of proofs.

Remark 2. Egquation (2) gives u, only implicitly and the values of
the estimate at the sample points have to be determined, i.e.,
system (3) has to be solved and A to be chosen so that “Gll; =2,
In Chapter 4 of Klonias (1980), utilizing the particular structure
of the "first MPLE of Good and Gaskins”, an efficient method is
presented for the resolution of the spline fn, which can be easily
adapted to determine the values of f* at the knots. The reader is
also referred to Good and Gaskins (1971, 1980), Scott, Tapia and
Thompson (1976), Tapia and Thompson (1978), and Ghorai and Tubin
(1979), where methods for the numerical evaluation of fn are

presented.
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